Towards the topological quantization of classical mechanics

نویسندگان

  • Francisco Nettel
  • Hernando Quevedo
چکیده

We consider the method of topological quantization for conservative systems with a finite number of degrees of freedom. Maupertuis’ formalism for classical mechanics provides an appropriate scenario which permit us to adapt the method of topological quantization, originally formulated for gravitational field configurations. We show that any conservative system in classical mechanics can be associated with a principal fiber bundle. As an application of topological quantization we derive expressions for the topological spectra of some simple mechanical systems and show that they reproduce the discrete behavior of the corresponding canonical spectra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological quantization of the harmonic oscillator

We present a derivation of the energy spectrum of the harmonic oscillator by using the alternative approach of topological quantization. The spectrum is derived from the topological invariants of a particular principal fiber bundle which can be assigned to any configuration of classical mechanics, when formulated according to Maupertuis formalism.

متن کامل

Quantization of Spectral Curves for Meromorphic Higgs Bundles through Topological Recursion

A geometric quantization using the topological recursion is established for the compactified cotangent bundle of a smooth projective curve of an arbitrary genus. In this quantization, the Hitchin spectral curve of a rank 2 meromorphic Higgs bundle on the base curve corresponds to a quantum curve, which is a Rees D-module on the base. The topological recursion then gives an all-order asymptotic ...

متن کامل

ar X iv : h ep - t h / 96 08 01 6 v 1 2 A ug 1 99 6 On Quantum Cohomology

We discuss a general quantum theoretical example of quantum cohomology and show that various mathematical aspects of quantum cohomology have quantum mechanical and also observable significance. 1 The quantum cohomology is one of the most fundamental and intressting mathematical-physical fields and although it is introduced according to certain physical models [1], however it should be considere...

متن کامل

Equivariant Localization of Path Integrals

We review equivariant localization techniques for the evaluation of Feynman path integrals. We develop systematic geometric methods for studying the semi-classical properties of phase space path integrals for dynamical systems, emphasizing the relations with integrable and topological quantum field theories. Beginning with a detailed review of the relevant mathematical background – equivariant ...

متن کامل

Skyrmions and Quantum Hall Ferromagnets in Improved Composite-Boson Theory

An improved composite-boson theory of quantum Hall ferromagnets is proposed. It is tightly related with the microscopic wave-function theory. The characteristic feature is that the field operator describes solely the physical degrees of freedom representing the deviation from the ground state. It presents a powerful tool to analyze excited states within the lowest Landau level. Excitations incl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008